ELABORAZIONE DI IMMAGINI ECOGRAFICHE ACQUISITE IN MICROGRAVITÀ

In questo capitolo presenteremo le procedure di elaborazione che abbiamo applicato ad immagini ecocardiografiche acquisite durante due campagne di voli parabolici in condizioni di microgravità. In particolare descriveremo la procedura di validazione del metodo semiautomatico di detezione dei contorni endocardici, confrontando i contorni ottenuti da tale procedura, basata su metodi level set, con quelli tracciati manualmente da due esperti cardiologi. Oltre a condurre un confronto sulle aree delle superfici racchiuse dai contorni stimati, condotto per determinare l'accuratezza e l'efficacia del metodo, descriveremo una procedura che consente di comparare punto per punto (calcolando una funzione distanza) i contorni fornendo informazioni di carattere morfologico sulla bontà del metodo.

3.1 Obiettivi delle elaborazioni

L' obiettivo delle nostre elaborazioni è quello di validare la procedura semiautomatica basata sui modelli "level set" utilizzata per individuare i contorni endocardici per l'estrazione dell'area del ventricolo sinistro, al fine di valutare gli effetti dell'assenza di peso indotti dalla microgravità sulle dimensioni del ventricolo sinistro (LV) e l'efficacia dell'applicazione LBNP (Low Body Negative Pressure) come contromisura.

Come abbiamo visto nel capitolo primo l'apparato cardiovascolare risulta essere fortemente influenzato dalla forza di gravità e le alterazioni emodinamiche che si vengono a creare in questa nuova situazione sono responsabili di molte delle conseguenze associate all'intolleranza ortostatica.

L'ecocardiografia consente di visualizzare le camere cardiache e le modificazioni da esse subite a causa dei cambiamenti del vettore gravità. In pratica clinica l'analisi quantitativa delle funzioni del ventricolo sinistro è basata sul tracciamento manuale off line dei contorni endocardici, che risulta essere soggettivo e che richiede molto tempo. L'applicazione della procedura per la detezione automatica dei contorni endocardici e l'estrazione delle dimensioni del ventricolo sinistro può facilitare e velocizzare il processo di analisi dei dati e ridurre la variabilità nei risultati dovuta alle interpretazioni soggettive.

La nostra ricerca si è concentrata sulla individuazione dei contorni del ventricolo sinistro perché è attraverso questa misura che vengono calcolati, mediante la determinazione dell'area, importanti parametri della funzionalità cardiaca quali l'*EDA (area fine diastole)*, l'*ESA (area fine sistole)* la *FAC (area data dall'EDA-ESA)* e la *FAC*% (data da (*EDA-ESA)/EDA× 100*).

Inoltre dalle stime dei contorni endocardici si può risalite con approssimazioni geometriche alle stime dei volumi ventricolari. Questo significa che con più accuratezza sono noti i contorni e con maggiore precisione si riescono a determinare le dimensioni delle camere cardiache. Inoltre la misura dei volumi viene utilizzata per valutare altre grandezze molto importanti, tra cui lo *stroke volume SV* (SV=(volume del ventricolo sinistro a fine diastole)-(volume del ventricolo sinistro a fine sistole)), la *frazione di eiezione* (SV/volume diastolico) che sono indici della funzionalità ventricolare, e quindi molto importanti al fine di formulare le eventuali diagnosi. Cercare di ottenere risultati sempre più vicini alla reale struttura cardiaca, migliorando la qualità delle informazioni è dunque fondamentale per facilitare il compito del medico, a cui vengono forniti gli strumenti per una interpretazione e diagnosi sempre più esatta.

3.2 Descrizione del Data Set

Prima di affrontare la descrizione delle elaborazioni effettuate e delle procedure utilizzate descriviamo la struttura dei dati oggetto del nostro studio.

I dati ecocardiografici che abbiamo analizzato sono stati acquisiti durante due campagne di voli parabolici (la trentesima dell'ESA e la ventiquattresima della CNES, l'Agenzia Spaziale Francese) effettuate utilizzando l'Airbus A300 "Zero G" gestito dalla Novespace presso l'aeroporto di Bordeaux in Francia.

Le acquisizioni ecocardiografiche oggetto del nostro studio sono state eseguite su di un gruppo selezionato di 11 volontari in buona salute (età media \pm DS, 46 \pm 5 anni). Tutti i soggetti sono stati sottoposti ad un esame medico (FAA classe III) e ad un test fisiologico in una camera ipobarica prima di poter partecipare ai voli ed, inoltre, nessuno di essi ha assunto farmaci prima e durante gli esperimenti.

Le acquisizioni sono state effettuate con i soggetti in posizione eretta e supina, assicurati con speciali cinture di sicurezza alla fusoliera del velivolo per consentire il mantenimento di tali posizioni anche durante la fase di microgravità. L'addome e le gambe erano chiusi in una camera LBNP. Per studiare l'efficacia di questa contromisura, il dispositivo LBNP (Lower Body Negative Pressure) con una pressione interna di circa -50 mmHg veniva applicato in maniera casuale durante la fase di microgravità durante la metà delle parabole effettuate da ogni soggetto.

La gravità istantanea è stata misurata costantemente usando l'accelerometro dell'aereo e poi memorizzata assieme alle immagini. Le immagini ecocardiografiche sono state acquisite in maniera continua con una frequenza di acquisizione di 37 frame/secondo nella vista apicale a 4 camere utilizzando un ecografo Aspen system (Acuson, France Siemens

Cie, France) opportunamente modificato per consentire il salvataggio di tutte le immagini digitalizzate relative all'intero profilo parabolico su un disco magneto-ottico (circa un minuto di acquisizione per parabola).

Figura 3-1: Acquisizione delle immagini ecocardiografiche durante il volo parabolico

Il nostro data set per la validazione della procedura di segmentazione è costituito da una selezione di 20 immagini ecocardiografiche acquisite seguendo la procedura sopra descritta corrispondenti ad istanti di fine diastole (*ED*) e di fine sistole (*ES*) con e senza il LBNP applicato. A queste 20 immagini ecocardiografiche è stata applicata la procedura di segmentazione sviluppata dal laboratorio di bioimmagini dell'Università degli Studi di Bologna per determinare in maniera automatica i contorni endocardici del ventricolo sinistro e, successivamente, per calcolarne l'area espressa in numero di pixel e cm².

Per le 20 immagini oggetto del nostro studio due operatori esperti cardiologi hanno tracciato i contorni endocardici manualmente. Quindi oltre alle 20 immagini ecografiche originali il nostro data set è costituito da 20 immagini con sovrapposto il tracciamento manuale di un cardiologo e da altre 20 immagini con il tracciamento manuale dell'altro cardiologo.

profondit à di scansione	positio n	gravity level	subject	parabol a	block	frame	fine diastole- fine sistole
18	LBNP	0g	102	25	5	207	ES
18	STAND	0g	102	24	4	151	ES
18	STAND	0g	102	24	4	205	ED
16	LBNP	1g	103	7	1	75	ES
16	LBNP	0g	103	7	5	242	ED
16	REST	1g	103	14	1	49	ED
16	REST	1g	103	14	1	58	ES
14	LBNP	1g	104	19	1	129	ED
14	LBNP	2g	104	19	3	194	ED
14	LBNP	2g	104	19	3	203	ES
14	STAND	1g	105	0	1	91	ED
14	STAND	1g	105	0	1	100	ES
14	REST	0g	105	13	5	20	ED
14	REST	0g	105	13	5	29	ES
14	STAND	2g	121	6	3	130	ED
14	STAND	2g	121	6	3	139	ES
14	STAND	0g	124	19	4	212	ES
14	STAND	0g	124	19	4	219	ED
16	STAND	1g	127	16	1	48	ED
16	STAND	1g	127	16	1	54	ES

Tabella 3-1: Elenco delle immagini ecocardiografiche oggetto del nostro studio. Per ognuna di esse è riportata rispettivamente: la profondità di scansione, la posizione del soggetto (in piedi STAND, in piedi con LBNP, sdraiato REST), il livello di gravità, il numero del soggetto, la parabola, il blocco, il numero del frame a cui corrisponde l'immagine ed infine se si tratta di una immagine relativa ad una acquisizione a fine sistole(ES) o a fine diastole(ED). Le immagini ecocardiografiche acquisite con viste apicali a 4 camere sono immagini in formato bmp (bitmap). Si tratta di immagini in scala di grigi ad 8 bit, quindi con 2⁸=256 toni di grigio di dimensioni pari a 384× 267 pixel (larghezza× altezza).

Ogni immagine è identificata da una serie di quattro numeri rappresentanti rispettivamente il numero del soggetto analizzato, il numero della parabola durante la quale è stata effettuata l'acquisizione, il blocco a cui appartiene l'immagine e infine, il numero del frame a cui corrisponde l'immagine analizzata (*soggetto_parabola_blocco_frame*).

Ad esempio il file 102_25_5_207.bmp corrisponde all'immagine ecografica riportata in figura 3-2.

Figura 3-2: Immagine ecografica 102_25_5_207.bmp. Si noti, in alto a sinistra, l'indicazione "LBNP" indicante l'uso di tale strumento durante l'acquisizione. In alto a destra oltre all'indicazione della data e dell'ora si possono vedere la profondità di scansione in mm (in questo caso180mm) ed il frame rate di 26 Hz. In basso a sinistra è riportato il livello di gravità (in questo caso 0 g).

Le immagini ecografiche con sovrapposti i contorni tracciati manualmente dai due cardiologi sono immagini in formato JPG. Si tratta di immagini RGB a 24 bit (quindi a colori). Infatti all'immagine eco originale in scala di grigi è stato sovrapposto il contorno tracciato manualmente ed evidenziato nelle immagini in verde. Inoltre anche l'area di scansione è messa in evidenza mediante un rettangolo verde (vedere figure 3-3 e 3-4).

Le dimensioni di queste immagini sono variabili nel senso che in pratica sono state ottenute catturando delle finestre video (screen shot) rappresentanti il contorno tracciato manualmente (manual tracing) e l'indicazione dell'area da essi delimitata calcolata con un apposito software.

Figura 3-3: Immagine ecografica 102_25_5_207_0.jpg relativa ad un manual tracing del primo cardiologo. In basso è riportato il valore dell'area racchiusa dal contorno stimato dal cardiologo in cm².

Figura 3-4: Immagine ecografica $102_{25}5_{207}$ R.jpg relativa al manual tracing del secondo cardiologo. Anche in questo caso, come per tutte le 40 immagini relative ai manual tracing, in basso è riportato il valore dell'area racchiusa dal contorno stimato dal cardiologo espressa in cm².

Figura 3-5: Immagini ecocardiografiche originali in formato bitmap. 20 immagini in scala di grigi ad 8 bit, quindi con 2⁸=256 toni di grigio di dimensioni pari a 384× 267 pixel (larghezza× altezza).

Figura 3.6: Immagini ecocardiografiche con manual tracing di un cardiologo sovrapposto. Si tratta di immagini RGB a 24 bit (quindi a colori). Infatti all'immagine eco originale in scala di grigi è stato sovrapposto il contorno tracciato manualmente ed evidenziato nelle immagini in verde. Inoltre anche l'area di scansione è messa in evidenza mediante un rettangolo verde. Nel riquadro in basso per ogni immagine è riportata l'area della superficie ventricolare (espressa in cm²) delimitata dal contorno tracciato manualmente dal cardiologo.

102_24_4_151_R.jpg

102_24_4_205_R.jpg

102_25_5_207_R.jpg

103_14_1_49_R.jpg

103_14_1_58_R.jpg

103_7_1_75_R.jpg

103_7_5_242_R.jpg

104_19_1_127_к.,pg 107_17_3_194_R.jpg

104_19_3_203_R.jpg

121_6_3_139_R.jpg

124_19_4_212_R.jpg

124_19_4_219_R.jpg

127_16_1_48_R.jpg

127_16_1_54_R.jpg

Figura 3.7: Immagini ecocardiografiche con il manual tracing del secondo cardiologo sovrapposto. Si tratta di immagini RGB a 24 bit (quindi a colori). Infatti all'immagine eco originale in scala di grigi è stato sovrapposto il contorno tracciato manualmente ed evidenziato nelle immagini in verde. Inoltre anche l'area di scansione è messa in evidenza mediante un rettangolo verde.

3.3 Panoramica su Matlab

Per l'implementazione degli algoritmi utilizzati nelle nostre elaborazioni abbiamo utilizzato, come ambiente di sviluppo e programmazione, Matlab. Inizialmente utilizzato da specialisti nell'elaborazione dei segnali e nell'analisi numerica, Matlab, negli ultimi anni, ha raggiunto un elevato livello di diffusione nei vari campi dell'ingegneria.

Matlab non è soltanto un linguaggio di programmazione ma anche un ambiente software che consente di utilizzare in modo efficiente tale linguaggio. Prodotto e commercializzato da The Math Works Inc. (Natick, Massachusetts), è disponibile per personal computer MS Windows e Macintosh e per sistemi Unix e Open VMS.

L'ambiente interattivo di Matlab consente di gestire variabili, importare ed esportare dati, svolgere calcoli, generare diagrammi, sviluppare e gestire file da utilizzare con Matlab. Questo linguaggio è stato sviluppato negli anni '70 per applicazioni relative a matrici, algebra lineare, e analisi numerica (infatti il nome Matlab sta per "Matrix Laboratory"). Le routine numeriche del linguaggio sono state provate e perfezionate attraverso anni di utilizzo e le loro capacità sono state ovviamente notevolmente ampliate in questo periodo. Matlab include vari moduli software aggiuntivi, chiamati toolbox, che svolgono compiti specializzati. Attualmente sono disponibili più di sedici toolbox per applicazioni che vanno dalla progettazione di sistemi di controllo ed elaborazione di segnali all'analisi finanziaria. Per realizzare i nostri programmi, in particolare, abbiamo utilizzato delle funzioni appartenenti all'Image Processing Toolbox. Questo modulo infatti ci ha consentito di elaborare le immagini utilizzando particolari funzioni che sono risultate molto utili ed efficaci per il raggiungimento dei nostri obbiettivi.

Il pregio di lavorare in MATLAB è che esso è un linguaggio di programmazione, come abbiamo visto, nato principalmente per il calcolo matriciale, per cui le numerose equazioni che dovremo applicare agli elementi delle matrici saranno implementabili attraverso semplici linee di codice e non richiederanno l'accesso esplicito ai singoli elementi.

D'altro canto l'uso di questo ambiente di programmazione rispetto al linguaggio C comporta un peggioramento dei tempi di elaborazione. Infatti Il passaggio dal linguaggio MATLAB al linguaggio C, pur complicando dal punto di vista della leggibilità l'implementazione delle procedure di segmentazione, implica un incremento della velocità di computazione legato alla più efficiente realizzazione delle librerie delle funzioni d'accesso alla memoria e all'I/O tipica del linguaggio C.

Figura 3-8: Versione di Matlab utilizzata per la stesura dei programmi sviluppati. Questo linguaggio di programmazione, prodotto e commercializzato da The Math Works Inc. (Natick, Massachusetts), ha raggiunto un elevato livello di diffusione nei vari campi dell'ingegneria. Matlab non è soltanto un linguaggio di programmazione ma anche un ambiente software che consente di utilizzare in modo efficiente tale linguaggio.

Figura 3-9: Ambiente di sviluppo Matlab. Si noti sulla sinistra l'elenco dei toolbox comprendente l'Image Processing Toolbox del quale ci siamo serviti per sviluppare le nostre procedure.

3.4 Procedura di segmentazione

La stima dei contorni sulle immagini bidimensionali viene realizzata mediante l'implementazione dell'algoritmo basato sui metodi "Level set" descritto nel capitolo secondo. Il contorno che cerchiamo oltre ad essere regolare non deve fuoriuscire dall'area di interesse anche nel caso in cui il contorno reale non sia completamente chiuso. La procedura di segmentazione descritta dalle equazioni viste nel paragrafo 2.2, utilizza come condizione iniziale dell'evoluzione un'opportuna funzione distanza con segno iniziale.

La funzione distanza è tale da assumere valori negativi all'interno del contorno e positivi all'esterno. Abbiamo visto che se stiamo lavorando su un'immagine N-dimensionale, il contorno che evolve è lo zero level set di una funzione avente dominio in \Re^{N+1} .

Nel nostro caso le immagini, e di conseguenza il contorno, sono bidimensionali, per cui avremo a che fare con funzioni aventi dominio in \Re^3 .

Di seguito descriviamo brevemente le fasi dell'analisi di una immagine che portano all'individuazione dei contorni endocardici del ventricolo sinistro.

Il passo iniziale consiste nel posizionamento, da parte dell'operatore, di alcuni punti (markers) il più possibile vicini ai contorni della camera del ventricolo sinistro. Lo si può fare muovendosi con il mouse sull'immagine e facendo click con il pulsante sinistro sui punti ritenuti opportuni; tali operazioni sono la conseguenza dell'inserimento nel programma di segmentazione del comando MATLAB ginput, il quale memorizza in un vettore le coordinate dei punti su cui si esegue il click.

Possiamo considerare tali markers come i vertici di un contorno poligonale di partenza, infatti il programma unisce questi punti generando un poligono. Il posizionamento dei markers richiede un accorgimento fondamentale: i markers vanno scelti seguendo il senso antiorario. Tale regola deve essere rispettata altrimenti l'algoritmo non converge, infatti la poligonale costituisce lo zero level–set di una funzione distanza con segno definita considerando positivo il segno all'esterno della poligonale e negativo il segno all'interno e tutte le quantità geometriche sono calcolate rispettando questa convenzione.

Questa superficie iniziale evolve seguendo il movimento guidato dall'equazione alle derivate parziali per un numero fissato di iterazioni. Il risultato finale è la superficie il cui livello zero rappresenta il contorno che separa la cavità cardiaca del ventricolo sinistro dall'endocardio. La procedura risulta essere stabile.

La detezione dei contorni endocardici è automatica per l'intero ciclo cardiaco, prendendo i contorni stimati come condizione iniziale per il frame successivo. E' da notarsi che il metodo è però semi–automatico, ovvero richiede l'intervento dell'operatore non solo all'inizio, ma anche quando i risultati non sono soddisfacenti. L'algoritmo, infatti, prevede di prendere come funzione distanza di partenza per ciascuna sezione successiva alla prima, la funzione distanza calcolata nell'ultima delle iterazioni effettuate per la sezione precedente; è evidente che se la variazione morfologica tra due sezioni, successive nello spazio o nel tempo, supera una certa entità, il contorno finale della sezione precedente sarà troppo lontano da quello vero della sezione in esame e il risultato delle iterazioni non porterà ad un contorno soddisfacente; in questo caso l'operatore dovrà potere intervenire, bloccando le iterazioni e introducendo manualmente un'opportuna serie di markers per avere un opportuno contorno di partenza.

Figura 3-10: passo iniziale della procedura di segmentazione. Dopo aver selezionato alcuni punti il più vicino possibile ai contorni reali il programma li unisce generando una poligonale che costituisce il contorno di partenza.

Figura 3-11: sequenza di passi dell'algoritmo che porta da una sezione bidimensionale, rappresentante un piano lungo l'asse apicale, alla determinazione dei contorni regolari mediante la procedura di segmentazione basata sulla metodologia level set.

Figura 3-12: contorno ventricolare stimato.

3.5 Determinazione dei coefficienti di conversione per le aree

Il primo problema che abbiamo dovuto affrontare dopo aver segmentato le 20 immagini ecografiche del nostro data set è stato quello di trovare degli opportuni coefficienti di conversione che ci permettessero di confrontare i valori delle aree stimate dalla procedura di segmentazione da noi utilizzata con quelli ottenuti dai tracciamenti manuali eseguiti dai due cardiologi.

Questa operazione si è resa necessaria perché le immagini dei manual tracing risultano essere di dimensioni diverse da quelle delle corrispondenti immagini eco.

In particolare le immagini dei manual tracing presentano per l'area di scansione una larghezza che oscilla tra i **283** e i **286** pixel e una altezza che oscilla tra i **210** e i **213** pixel mentre le immagini eco originali hanno, per la medesima area, dimensioni più piccole tra i **281** e i **287** pixel per la larghezza e tra i **197-201** pixel per l'altezza (si veda in proposito la *tabella 3-2*). Quindi per confrontare le aree dei ventricoli sinistri ottenute mediante il tracciamento manuale con quelle ottenute dalla segmentazione delle immagini abbiamo dovuto determinare degli opportuni fattori di conversione.

In particolare il nostro obbiettivo era, partendo dall'area stimata dalla procedura di segmentazione espressa in numero di pixel, arrivare a determinarne il corrispondente valore in cm² per poi trovare l'opportuno coefficiente che ci consentisse di rendere questa area confrontabile con quella delle stime dei due manual tracing sempre espressa in cm². Più precisamente il confronto, per validare la procedura di segmentazione, doveva essere fatto tra l'area stimata dalla procedura basata sul metodo level set e la media delle stime dell'area fatta dai due cardiologi.

	Dimensioni Manual Tracing

		Dimensione			
Id Immagine	Prof Scan		Alt A sc	Largh A Verde	Altez A Verde
ia minagine	cm	(nixel)	(pixel)	(nixel)	(nixel)
		(pixel)			
102 24 4 151	18	287	199	283	213
102 24 4 205	18	287	200	283	213
102_25_5_207	18	287	198	283	213
103_7_1_75	16	287	200	286	213
103_7_5_242	16	288	200	286	213
103_14_1_49	16	289	199	286	213
103_14_1_58	16	281	199	286	213
104_19_1_129	14	287	197	285	210
104_19_3_194	14	287	198	285	210
104_19_3_203	14	286	198	285	210
105_0_1_91	14	286	198	285	210
105_0_1_100	14	287	198	285	210
105_13_5_20	14	286	198	285	210
105_13_5_29	14	287	198	285	210
121_6_3_130	14	287	198	285	210
121_6_3_139	14	287	198	285	210
124_19_4_212	14	287	199	383	287
124_19_4_219	14	288	199	285	210
127_16_1_48	16	288	201	286	213
127_16_1_54	16	286	199	286	213

Tabella 3-2: Nella tabella sono riportate le dimensioni dell'area di scansione (espresse in numero di pixel) nelle immagini eco e nelle corrispondenti immagini del manual tracing. Come riferimento per la determinazione dei coefficienti di conversione abbiamo utilizzato le 20 immagini del manual tracing. Infatti avevamo a disposizione, per ognuna di queste immagini, le dimensioni effettive misurate. In particolare la larghezza, la lunghezza e le aree (misurata e calcolata) del riquadro verde evidenziato in ogni immagine del manual tracing (vedere tabella 3-3).

Visto che avevamo a disposizione per ogni immagine del manual tracing i dati delle misure reali riportate in cm della larghezza, dell'altezza e dell'area totale misurata e calcolata dell'area delimitata dal rettangolo verde (si veda la *tabella 3-3*) abbiamo deciso di seguire il seguente metodo:

per ognuna delle immagini eco di cui disponevamo abbiamo ritagliato un'area rettangolare corrispondente alla superficie di scansione (simile a quella delimitata dal rettangolo verde nelle immagini del manual tracing) riportandone le dimensioni in pixel (si veda la figura 3-13).

Figura 3-13: l'immagine rappresenta la procedura eseguita su ognuna delle 20 ecografie originali per delimitare l'area di scansione (indicata dal rettangolo tratteggiato). Estratto il rettangolo ne abbiamo individuato le dimensioni espresse in pixel.

Id immagine	dim_x larghezza (cm)	dim_y lunghezza (cm)	area A1 misurata (cm ²)	area A1 calcolata (cm ²)

102_24_4_151	23,72	17,75	424,64	421,03
102_24_4_205	23,63	17,83	419,92	421,3229
102_25_5_207	23,72	17,83	418,9	422,9276
103_7_1_75	21,31	15,78	325,93	336,2718
103_7_5_242	21,23	15,92	330,31	337,9816
103_14_1_49	21,38	15,92	330,34	340,3696
103_14_1_58	21,31	15,78	329,95	336,2718
104_19_1_129	18,75	13,67	257,89	256,3125
104_19_3_194	18,75	13,74	256,84	257,625
104_19_3_203	18,75	13,8	257,02	258,75
105_0_1_91	18,75	13,74	258,41	257,625
105_0_1_100	18,89	13,8	255,29	260,682
105_13_5_20	18,62	13,8	255,64	256,956
105_13_5_29	18,75	13,74	256,39	257,625
121_6_3_130	18,82	13,8	255,32	259,716
121_6_3_139	18,75	13,8	254,69	258,75
124_19_4_212	18,75	13,8	258,73	258,75
124_19_4_219	18,75	13,74	255,87	257,625
127_16_1_48	21,31	15,85	338,08	337,7635
127_16_1_54	21,31	15,85	337,24	337,7635

Tabella 3-3: Dati misurati relativi alle dimensioni dell'area di scansione nelle immagini dei manual tracing. In particolare abbiamo per ogni area la larghezza e la lunghezza effettivamente misurate riportate in cm e di seguito sia l'area misurata A1 che l'area calcolata A2 (ottenuta moltiplicando la larghezza misurata per la lunghezza misurata). Da questa informazione, sapendo la dimensione della profondità di scansione misurata (riportata nella **tabella 3-3**), ricaviamo la dimensione in pixel di un cm dato (altezza in pixel diviso profondità di scansione misurata). Ora possiamo ricavarci anche la larghezza espressa in cm dato dividendo il numero di pixel della larghezza per il numero di pixel in un cm dato. A questo punto ci calcoliamo l'area della superficie rettangolare (A2) espressa in cm². Dividendola per il numero totale di pixel in essa contenuta otteniamo l'area di un singolo pixel (in cm²) e moltiplicandola per il numero di pixel ottenuti dalla procedura di segmentazione troviamo l'area stimata del ventricolo (si veda in proposito la *tabella 3-4*)

A questo punto per poter confrontare questa area con quella del manual tracing dobbiamo moltiplicarla per un opportuno fattore di conversione. Per determinare quest'ultimo abbiamo impostato la seguente proporzione:

$$A 1_{areaMT}$$
 : $A 2_{areaECO} = A_{LScfMT}$: A_{LSECO}

L'area del rettangolo verde del manual tracing (A1) sta all'area dell'immagine eco ritagliata (A2) come l'area del ventricolo stimata con il level set confrontabile con quella del manual tracing (che costituisce la nostra incognita) sta all'area stimata con il level set calcolata nell'immagine eco. Il nostro fattore di conversione è dato dal rapporto A1/A2. A seconda che si consideri l'area A1 misurata o l'area A1 calcolata avremo due diversi fattori di conversione C1 e C2 (vedere tabella 3-5). In questo modo otteniamo due stime dell'area del ventricolo attraverso il level set che possiamo confrontare con i valori medi delle stime dei due manual tracing.

			quanti pix in					Stime Segmentazione
Largh.	Altez.	Area	Pix/CmDato	Largh.	A2 Area	pixels LS	AreaPixel	Area Stimata Level Set
(pixel)	(pixel)	(pixel)	(pixel/cm)		(cm^2)		(cm^2)	N.pixel * area pixel (cm^2)
287	199	57113	11,211268	25,599246	454,39	2147,00	0,007956	17,0814
287	200	57400	11,217050	25,586050	456,20	4480,00	0,007948	35,6058
287	198	56826	11,104879	25,844495	460,81	1741,00	0,008109	14,1179
287	200	57400	12,674271	22,644300	357,33	2480,00	0,006225	15,4385
288	200	57600	12,562814	22,924800	364,96	3041,00	0,006336	19,2683
289	199	57511	12,500000	23,120000	368,07	4543,00	0,006400	29,0752
281	199	55919	12,610900	22,282312	351,61	2229,00	0,006288	14,0158
287	197	56539	14,411119	19,915178	272,24	5324,00	0,004815	25,6355
287	198	56826	14,410480	19,916061	273,65	5670,00	0,004816	27,3040
286	198	56628	14,347826	19,933333	275,08	3000,00	0,004858	14,5730
				,		-		,
286	198	56628	14,410480	19,846667	272,69	6812,00	0,004816	32,8033
287	198	56826	14.347826	20.003030	276.04	3354.00	0.004858	16,2926
286	198	56628	14.347826	19,933333	275.08	6562.00	0.004858	31.8760
287	198	56826	14,410480	19,916061	273.65	2992.00	0.004816	14,4080
287	198	56826	14.347826	20.003030	276.04	5042.00	0.004858	24,4924
287	198	56826	14,347826	20.003030	276.04	3189.00	0.004858	15,4911
287	199	57113	14,420290	19,902513	274.65	3510.00	0.004809	16.8795
288	199	57312	14 483261	19 885025	273 22	5413.00	0.004767	25 8051
		5.0.2					2,00.01	20,000.
288	201	57888	12.681388	22,710448	359,96	5251.00	0.006218	32.6519
286	199	56914	12,555205	22,779397	361.05	3847.00	0.006344	24,4048
		500.1	,000_00	,		,	2,000011	2.1,10.10

Tabella 3-4: Dati relativi alle dimensioni del riquadro corrispondente all'area di scansione (A2) nelle immagini eco originali. Oltre alle dimensioni del rettangolo riportiamo il numero di pixel per cm dato ricavato dividendo l'altezza in pixel per l'altezza dell'area di scansione misurata. Riportiamo anche l'area stimata dalla procedura di segmentazione data dal prodotto del numero di pixel contenuti all'interno del contorno stimato dalla procedurale di segmentazione (pixel LS) per l'area di un singolo pixel all'interno del riquadro (Area pixel). Per ognuna delle due stime abbiamo poi condotto un'analisi di Regressione e di Bland-Altman riportata nel capitolo quarto che ha evidenziato l'accuratezza della procedura di segmentazione utilizzata e ci ha permesso di individuare il miglior fattore di conversione.

				Coef. C1	Coef. C2
ld Immagine	area A1 misurata	area A1 calcolata	Area A2	A1misurata/A2	A1calcolata/A2
	(cm ²)	(cm ²)	(cm ²)		
102_24_4_151	424,64	421,03	454,39	0,934535	0,926590
102_24_4_205	419,92	421,3229	456,20	0,920475	0,923550
102_25_5_207	418,9	422,9276	460,81	0,909057	0,917797
103_7_1_75	325,93	336,2718	357,33	0,912134	0,941076
103_7_5_242	330,31	337,9816	364,96	0,905051	0,926071
103_14_1_49	330,34	340,3696	368,07	0,897491	0,924740
103_14_1_58	329,95	336,2718	351,61	0,938385	0,956364
104_19_1_129	257,89	256,3125	272,24	0,947287	0,941493
104_19_3_194	256,84	257,625	273,65	0,938583	0,941451
104_19_3_203	257,02	258,75	275,08	0,934346	0,940635
105_0_1_91	258,41	257,625	272,69	0,947622	0,944743
105_0_1_100	255,29	260,682	276,04	0,924824	0,944357
105_13_5_20	255,64	256,956	275,08	0,929330	0,934114
105_13_5_29	256,39	257,625	273,65	0,936938	0,941451
121_6_3_130	255,32	259,716	276,04	0,924932	0,940857
121_6_3_139	254,69	258,75	276,04	0,922650	0,937358
124_19_4_212	258,73	258,75	274,65	0,942019	0,942092
124_19_4_219	255,87	257,625	273,22	0,936497	0,942921
127_16_1_48	338,08	337,7635	359,96	0,939214	0,938335
127_16_1_54	337,24	337,7635	361,05	0,934045	0,935494

Tabella 3-5: Coefficienti di conversione C1 e C2 trovati. Per poter effettuare un confronto con i valori delle aree ottenute dai tracciamenti manuali dei due cardiologi dobbiamo moltiplicare le stime ottenute con la procedura di segmentazione per questi coefficienti.

Id Immagine	Area Stimata Level Set	Val. medio stime MT	Area da confrontare 1	Area da confrontare 2
	N.pixel * area pixel		Area Level	Area Level
	(cm ²)	(cm ²)	Set*C1 (cm ²)	Set*C2 (cm ²)
102_24_4_151	17,0814	14,62	15,96	15,83
102_24_4_205	35,6058	35,24	32,77	32,88
102_25_5_207	14,1179	12,17	12,83	12,96
103_7_1_75	15,4385	13,21	14,08	14,53
103_7_5_242	19,2683	17,34	17,44	17,84
103_14_1_49	29,0752	27,72	26,09	26,89
103_14_1_58	14,0158	12,62	13,15	13,40
104_19_1_129	25,6355	24,72	24,28	24,14
104_19_3_194	27,3040	27,88	25,63	25,71
104_19_3_203	14,5730	14,88	13,62	13,71
105_0_1_91	32,8033	33,73	31,09	30,99
105_0_1_100	16,2926	16,81	15,07	15,39
105_13_5_20	31,8760	30,41	29,62	29,78
105_13_5_29	14,4080	14,15	13,50	13,56
121_6_3_130	24,4924	23,89	22,65	23,04
121_6_3_139	15,4911	16,35	14,29	14,52
124_19_4_212	16,8795	15,51	15,90	15,90
124_19_4_219	25,8051	26,26	24,17	24,33
127_16_1_48	32,6519	31,58	30,67	30,64
127_16_1_54	24,4048	23,76	22,80	22,83

Tabella 3-6: Raffronto tra il valore delle medie delle aree stimate ottenute con il manual tracing e le aree calcolate con la procedura di segmentazione. Vengono riportate due aree relative alla segmentazione, una ottenuta utilizzando il coefficiente di conversione C1 e una ottenuta attraverso il coefficiente C2. Nel capitolo quarto analizzeremo i risultati ottenuti effettuando l'analisi statistica.

Figura 3-14 Procedimento seguito per ritagliare l'area di scansione nelle immagini relative ai manual tracing. Tutte le operazioni di gestione delle immagini sono state eseguite utilizzando l'applicativo per il fotoritocco Corel Photo Paint.

3.6 Script TrovareaMT.m

Dopo aver confrontato le aree stimate, mediante l'applicazione della procedura di segmentazione, con le aree ottenute con i tracciamenti manuali abbiamo realizzato uno script in matlab, TrovareaMT, in grado di calcolare l'area racchiusa dai contorni (evidenziati in verde) delle immagini dei manual tracing.

Poi lo abbiamo applicato alle 20 immagini in formato JPG dei manual tracing, confrontando i valori ottenuti con quelli riportati su ogni immagine e utilizzati come riferimento per la validazione della procedura di segmentazione.

Successivamente abbiamo effettuato una analisi statistica dei risultati ottenuti.

Per fare questo abbiamo calcolato l'area di un singolo pixel nelle immagini manual tracing seguendo due metodi diversi. Nel primo abbiamo diviso l'area totale misurata per il numero di pixel in essa contenuti. Nel secondo abbiamo diviso l'area totale calcolata (come prodotto della larghezza e della altezza misurate) e poi le abbiamo divise per il numero totale di pixel. Abbiamo così ottenuto due aree leggermente diverse. Queste due aree moltiplicate per il numero di pixel all'interno del contorno tracciato manualmente ottenuto utilizzando lo script tovareamt ci hanno dato i valori delle stime ottenute attraverso lo script elaborato (si veda la *tabella 3-7*). A questo punto abbiamo valutato l'accuratezza del nostro programma effettuando una analisi di Regressione ed una analisi di Bland Altman riportate nel capitolo quarto. Nelle pagine seguenti descriviamo brevemente le caratteristiche dello script. Questo script, sviluppato in Matlab, compie delle elaborazioni sulle immagini dei manual tracing. Appena mandato in esecuzione il programma richiede il nome dell'immagine da elaborare.

La prima cosa da fare è selezionare con il mouse l'area da ritagliare (effettuando una operazione di crop) dall'immagine caricata. Bisogna fare attenzione a ritagliare la superficie il più possibile vicina al contorno verde del manual tracing (vedere figura 3-16).

Fatto questo il codice crea una nuova immagine RGB nella quale tutti i pixel aventi i colori nella codifica rgb al di fuori di un determinato range (opportunamente determinato studiando la codifica dei punti verdi del manual tracing) sono sostituiti con un pixel nero (vedere figura 3-17).

In questo modo si ha a disposizione una immagine che rappresenta solo il contorno del ventricolo, in verde, tracciato dal medico. L'immagine RGB True Color è costituita da una matrice m× n× 3 di classe uint8 nella quale ad ogni pixel è associato un vettore di dimensione 3 all'interno del quale sono memorizzati i livelli dei tre colori fondamentali rosso (Red), verde (Green), e blu (Blue) nel range [0-255] e che contribuiscono alla formazione del colore rappresentato sullo schermo.

Questa immagine viene poi convertita da RGB in una immagine binaria. Così la matrice $m \times n \times 3$ viene convertita in una matrice $m \times n$ nella quale ad ogni pixel viene associato il valore 1 o 0 a seconda che la sua luminosità risulti più alta o più bassa di un valore di riferimento stabilito che può variare da 0 a 1 (nel nostro caso abbiamo scelto il level=0.4).

Siamo così arrivati ad avere una immagine rappresentante il contorno del ventricolo attraverso dei pixel bianchi su uno sfondo nero (vedere figura 3-18).

A questo punto viene richiesto all'utente di selezionare i due punti del contorno attraverso i quali far passare il segmento che chiude il manual tracing (coincidente con il piano valvolare).

Per fare questo ci si posiziona con il mouse sulla figura cercando di individuare i due pixel più in basso del contorno tra quelli non isolati (che eventualmente potrebbero esserci), poi si clicca (vedere figura 3-19). Anche in questo caso con il comando ginput si memorizzano le coordinate dei due punti selezionati in un vettore.

Fatto questo il programma traccia il segmento congiungente i due punti chiudendo il contorno (vedere figura 3-20) e inizia a calcolare il numero di pixel in esso contenuti. L'algoritmo utilizzato non fa altro che scansionare la figura alla ricerca del primo pixel bianco.

Appena lo trova considera la riga in cui si trova quella del bordo superiore del contorno, e di conseguenza comincia a calcolare l'area analizzando tutte le righe a partire da quella successiva fino alla prima riga che risulterà completamente priva di pixel bianchi (riga nera).

Per fare questo per ogni riga si cerca il primo pixel bianco, trovatolo si verifica se il pixel adiacente è nero o bianco. Nel primo caso (contorno di spessore pari ad un pixel) si inizia ad incrementare il contatore di pixel di riga fino a quando non si trova un altro pixel bianco o finisce la riga.

Nel secondo caso invece si scandisce il contorno (spesso due o più pixel) fino a quando non si trova il primo pixel nero, dopodiché si inizia ad incrementare il contatore dei pixel di riga fino alla fine della riga o al primo pixel bianco. La procedura viene ripetuta per tutte le righe dell'area selezionata dal comando crop iniziale incrementando opportunamente gli indici di riga (si veda il listato del programma riportato in appendice).

Di seguito elenchiamo le diverse fasi che portano alla determinazione dell'area stimata mediante il manual tracing a partire dall'immagine in formato JPG:

Figura 3-15: Immagine 102_24_4_205_O.JPG rappresentante l'immagine ecocardiografica da elaborare con sovrapposto il manual tracing del primo cardiologo.

Figura 3-16: primo step della procedura, selezione dell'area da ritagliare (effettuando una operazione di crop) dall'immagine caricata. Bisogna fare attenzione a ritagliare la superficie il più possibile vicina al contorno verde del manual tracing

Figura 3-17: secondo step della procedura, il codice crea una nuova immagine RGB nella quale tutti i pixel aventi i colori (espressi nella codifica RGB) al di fuori di un determinato range, opportunamente determinato studiando la codifica dei punti verdi del manual tracing, sono sostituiti con un pixel nero. In questo modo si ha a disposizione una immagine che rappresenta solo il contorno del ventricolo, in verde, tracciato dal medico.

Figura 3-18: terzo step della procedura, l'immagine viene poi convertita da RGB in una immagine binaria. Così la matrice m× n× 3 ad essa associata viene convertita in una matrice m× n nella quale ad ogni pixel viene associato il valore 1 o 0 a seconda che la sua luminosità risulti più alta o più bassa di un valore di riferimento stabilito che può variare da 0 a 1 (nel nostro caso abbiamo scelto il level=0.4).

Si arriva così ad avere una immagine rappresentante il contorno del ventricolo attraverso dei pixel bianchi su uno sfondo nero, ultima immagine a destra.

Figura 3-19: quarto step della procedura, viene richiesto all'utente di selezionare i due punti del contorno attraverso i quali far passare il segmento che chiude il manual tracing (coincidente con il piano valvolare). Per fare questo ci si posiziona con il mouse sulla figura cercando di individuare i due pixel più in basso del contorno tra quelli non isolati (che eventualmente potrebbero esserci), poi si clicca.

Figura 3-20: quinto step della procedura, il programma traccia il segmento congiungente i due punti chiudendo il contorno ed inizia a calcolare il numero di pixel in esso contenuti.

Figura 3-21: alla fine il programma fornisce il numero di pixel contenuti all'interno del contorno tracciato manualmente.

Tabella 3-7: Aree stimate con lo script TrovareMT.m dei manual tracing. Abbiamo due stime perché abbiamo moltiplicato il numero di pixel calcolati dalla procedura e indicanti l'area racchiusa dai contorni tracciati manualmente per due diverse aree dei singoli pixel. Una è stata calcolata dividendo l'area misurata per il numero di pixel in essa contenuti, nell'altro caso abbiamo fatto il prodotto tra la lunghezza e la larghezza misurate e poi lo abbiamo diviso per il numero di pixel totali.

3.7 Calcolo delle distanze tra i contorni

Per avere una ulteriore informazione sull'efficacia del metodo di segmentazione utilizzato abbiamo sviluppato delle procedure in matlab che ci consentissero di effettuare il calcolo delle distanze tra i contorni. Questi script consentono di comparare punto per punto (calcolando una funzione distanza con segno) i contorni stimati con la procedura di segmentazione con i contorni dei due manual tracing dei due cardiologi. Di seguito ne descriviamo brevemente le caratteristiche. In appendice sono riportati i listati dei programmi sviluppati mentre per l'analisi dei risultati ottenuti si rimanda al capitolo quarto.

3.7.1 Script "trecontorni.m"

Il primo problema che abbiamo dovuto affrontare è stato quello di ottenere, a partire dai 40 file dei manual tracing, le informazioni sulla localizzazione dei contorni tracciati manualmente. Il programma, dopo aver richiesto in ingresso il nome dell'immagine del manual tracing da analizzare (**soggetto_parabola_blocco_frame**), la carica e la visualizza. A questo punto l'operatore deve ritagliare l'area corrispondente all'immagine eco originale, lo script mediante un'operazione di "crop" ed una successiva operazione di "resize" porterà le dimensioni di questa immagine a quelle standard delle immagini eco originali (267× 384 pixel).

A questo punto l'operatore è chiamato a selezionare il maggior numero di punti possibile sopra il contorno del tracciamento manuale. In questo modo il programma, attraverso il comando ginput, memorizza tutto il contorno, ne calcola la funzione distanza attraverso la funzione "polydistf" e successivamente la salva in un file dat in una cartella contenete tutte le funzioni distanza relative ai contorni dei corrispondenti manual tracing. Alla fine viene visualizzata l'immagine eco originale con sovrapposti rispettivamente in verde e in blu i contorni dei tracciamenti manuali dei cardiologi. Oltre ad essere caricati questi contorni precedentemente salvati viene aperto anche il file relativo al contorno stimato dalla procedura di segmentazione e viene sovrapposto alla stessa immagine utilizzando il colore rosso. Di seguito riportiamo alcune figure relative alla procedura descritta alle immagini relative all'acquisizione applicata eco 102_24_4_205.

Figura 3-22: L'operatore seleziona l'area corrispondente a quella dell'immagine eco originale nell'immagine del tracciamento manuale caricata. Il programma, attraverso operazioni di "crop" e di "resize" ridimensionerà l'area selezionata portandola alle misure delle immagini eco originali (267× 384 pixel).

Figura 3-23: A questo punto l'operatore è chiamato a selezionare il maggior numero di punti possibile sopra il contorno del tracciamento manuale. In questo modo il programma, attraverso il comando ginput (graphical input from mouse) memorizza tutto il contorno, ne calcola la funzione distanza attraverso la funzione "polydistf" e successivamente la salva in un file dat.

Figura 3-24: La stessa procedura viene ripetuta per il tracciamento manuale del secondo cardiologo con le stesse modalità.

Figura 3-25: Alla fine viene visualizzata l'immagine eco originale con sovrapposti, rispettivamente in verde e in blu, i contorni dei tracciamenti manuali dei due cardiologi. Inoltre viene caricato e sovrapposto in rosso il contorno trovato dalla procedura di segmentazione.

3.7.2 Script Confronto

Lo script confronto ha come file di ingresso l'immagine originale eco (soggetto_parabola_blocco_frame.bmp) e tre file dat: uno contenente la funzione distanza con segno del Level Set, uno contenente la funzione distanza con segno del manual tracing del primo cardiologo e, infine, uno contenente la funzione distanza con segno del manual tracing del manual tracing del secondo cardiologo. Le ultime due distanze sono state calcolate in precedenza con lo script trecontorni.m.

Dopo aver aperto questi tre file che contengono i tre contorni da confrontare, il programma mostra 3 immagini eco originali con sovrapposti i contorni ottenuti con i manual tracing e con la procedura di segmentazione basata sui metodi level set. Provvede poi a salvare le tre immagini con i rispettivi contorni colorati (in rosso il level set, in verde il manual tracing del primo cardiologo e in blu il manual tracing del secondo) in tre file con estensione sempre bmp.

A questo punto inizia l'elaborazione che consiste essenzialmente nel calcolo di una mappa distanza (ovvero una matrice di dimensioni uguali a quelle dell'immagine eco originale che contenga, in ogni sua cella, la distanza dal contorno stimato dalla procedura di segmentazione del pixel ad essa associato). Si utilizza l'equazione alla base del metodo Level Set (vedere capitolo secondo)

con il valore della funzione F dato da +1 in caso di compressione e -1 nel caso di espansione.

In questo modo, facendo espandere/comprimere la curva con un passo unitario, si può risalire per ogni punto del contorno trovato applicando la procedura di segmentazione alla distanza dei due manula tracing.

Le nostre elaborazioni sono state effettuate con due cicli, uno per le compressioni e uno per le espansioni incrementando ad ogni passo il valore del coefficiente F (abbiamo scelto un range da 1 fino a 30 per le compressioni e da -1 fino a -30 per le espansioni).

Ottenuta la matrice mappa distanza (a partire dallo zero level set originario) possiamo calcolare per ognuno dei due manual tracing la funzione distanza effettuando il prodotto tra la matrice mappa distanza e una opportuna matrice appositamente creata che presenta degli zero in tutti i punti tranne in quelli del contorno del manual tracing in corrispondenza del quale vi sono degli uno. In questo modo otteniamo la matrice distanza per ognuno dei due manual tracing.

A questo punto possiamo calcolare l'errore massimo e l'errore medio rispetto al contorno stimato dalla procedura di segmentazione ottenendo non solo un'informazione quantitativa sull'attendibilità del nostro metodo ma anche morfologica.

Di seguito riportiamo alcune figure che illustrano il funzionamento della procedura.

Figura 3-26 Immagine 102_24_4_151 con sovrapposto il contorno elaborato dalla procedura di segmentazione ottenuto caricando il file con estensione. dat corrispondente.

Figura 3-27 Immagine 102_24_4_151 con sovrapposto il contorno del manual tracing del primo cardiologo ottenuta caricando il corrispondente file con estensione .dat.

Figura 3-28 Immagine 102_24_4_151 con sovrapposto il contorno del manual tracing del secondo cardiologo ottenuta caricando il corrispondente file.dat.

Figura 3-29 Ambiente Matlab con il risultato della procedura confronto (errore massimo e medio tra i manual tracing e il contorno stimato).

	Errore medio	Errore massimo	Errore medio	Errore massimo
Id Immaging	rispetto al manual	rispetto al manual	rispetto al manual	rispetto al
	tracingi	tracing i	tracingz	manual tracingz
102_24_4_151	4,4420	13	6,1408	12
102_24_4_205	4,0182	9	3,4854	10
102_25_5_207	4,7934	16	3,9423	11
103_7_1_75	4,1435	11	3,1652	11
103_7_5_242	9,9520	22	9,4569	18
103_14_1_49	4,5341	13	3,7986	11
103_14_1_58	6,6413	14	4,7619	16
104_19_1_129	8,8857	999	4,6854	14
104_19_3_194	5,6044	19	6,3063	22
104_19_3_203	11,0731	23	5,2379	13
105_0_1_91	9,5457	22	4,6647	13
105_0_1_100	12,6207	27	12,3527	27
105_13_5_20	5,5439	14	5,1386	15
105_13_5_29	7,8970	26	6,6691	21
121_6_3_130	10,5510	34	11,3777	26
121_6_3_139	10,1377	37	8,3556	21
124_19_4_212	9,2945	19	8,5660	29
124_19_4_219	7,8261	30	5,4295	14
127_16_1_48	16,6805	999	4,6333	12
127_16_1_54	4,9697	15	3,6090	14

Tabella 3-8: Per ogni immagine eco riportiamo i valori dell'errore medio e massimo tra i tracciamenti manuali e il contorno stimato dalla procedura di segmentazione (espressi in numero di pixel).